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Abstract. We introduce Modular Markovian Logic (MML) for compositional
continuous-time and continuous-space Markov processes. MML combines oper-
ators specific to stochastic logics with operators reflecting the modular structure
of the models, similar to those used by spatial and separation logics. We present a
complete Hilbert-style axiomatization for MML, prove the small model property
and analyze the relation between stochastic bisimulation and logical equivalence.

1 Introduction
Complex networks (e.g., embedded systems, communication networks, the Internet
etc.) and complex systems (e.g., biological, ecological, social, financial, etc.) are of-
ten modelled as stochastic processes, to encapsulate a lack of knowledge or inherent
randomness. Such systems are frequently modular in nature, consisting of parts which
are systems in their own right. Their global behaviour depends on the behaviour of their
parts and on the links which connect them. Understanding such systems requires inte-
gration of local stochastic information in a formal way, in order to address questions
such as: ”to what extent is it possible to derive global properties of the system from the
local properties of its modules?”.

This is a problem of fundamental importance in complex systems that has been usu-
ally addressed semantically: probabilistic and stochastic process algebras, for instance,
aim at describing compositionally the behaviour of a system from the behaviours of
its subsystems taking into account various types of synchronization or communication.
This approach is quite restrictive, as process algebras are not logics: one cannot ex-
press basic logical operations such as conjunction, disjunction, implication or negation
of properties. Usually, to do this, people use logics such as temporal logics, modal µ-
calculus [21] or Hennessy-Milner logic [18] to express properties of transition systems.
But these are global properties only and no logical framework developed so far allows
reasoning on stochastic systems and subsystems at the same time.

In this paper we develop a logical framework called Modular Markovian Logic
(MML) that tackles this problem by organizing qualitative and quantitative properties of
stochastic systems in hierarchical, modular structures, thereby proving global properties
from the local properties of modules. Formally, denoting ”process P has the property φ”
by P  φ and letting ”⊗” be the composition operator, we aim to establish a framework

containing modular proof rules of the form
P1  φ1, ..., Pk  φk

P1⊗...⊗Pk  ρ
C(ρ, φ1, .., φk), where

C is a logical constraint.
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To gain this level of expressivity, MML combines stochastic operators similar to
the ones of Aumann’s system [1, 14] with modular operators similar to the ones used
in spatial logics [5, 6] and in separation logics [30]. For an observable action a and
a positive rational r, the operator ”La

r ” of MML expresses the fact that a process can
perform an a-transition with the rate1 at least r. In addition, the composition operator
”|” joins logical terms and directly expresses properties of the combined subsystems.

On the semantic level, we introduce the modular Markov processes (MMPs) which
are (continuous-) labelled Markov processes [13, 28] enriched with an algebraic struc-
ture. This algebra defines the composition of Markovian systems and establishes the
relation between a system and its subsystems. The composition of behaviours satis-
fies a general synchronization pattern which subsumes most of the classical notions of
parallel composition found in process algebras.

We define the modular Markovian logic for a semantics based on MMPs. We inves-
tigate the relation between stochastic bisimulations of MMPs and logical equivalence
induced by MML over the class of MMPs. We present a complete Hilbert style axiom-
atization of MML for the Markovian semantics and prove the small model property.
Research context. Labelled Markov process (LMPs) are introduced in [12, 3, 13, 28]
and they generalize most of the models of Markovian systems. A similar concept,
Harsanyi type space (HTS), has been studied in the context of belief systems [15, 27].
MMPs are built on top of these, by exploiting their equivalence proved in [10]. In ad-
dition, MMPs have inbuilt an algebraic structure that extends, for continuous space and
time, the concepts of the Markov chain algebra [4].

Probabilistic logics have been studied for LMPs (probabilistic versions of temporal
and Hennessy-Milner logics [13, 11, 28]), for HTSs (Aumann’s system [1, 14]) and in
a more general context [9]. The first class focuses on model checking and logical char-
acterization of stochastic bisimulation, while for Aumann’s system also axiomatization
issues have been addressed [17, 31]. In [8] we have proposed a completely axiomatized
stochastic logic that combines features of the two classes of logics. In this paper we ex-
tend the stochastic logic with modular operators that allow us, in addition, to investigate
the algebraic structures of the models.

Modular logics, such as spatial logics [5, 6] and separation logic [30] have been
developed for concurrent nondeterministic systems, but to the best of our knowledge,
no stochastic or probabilistic version of these have been studied.

The paper is organized as follows. Section 2 introduces basic concepts used in the
paper. Section 3 defines MMPs and their bisimulation. Section 4 presents MML and re-
sults concerning the relationship between logical equivalence and bisimulation. Section
5 contains the axiomatic system of MML, the soundness and completeness metatheo-
rems and the small model property. The paper also contains a conclusive section.

2 Preliminary definitions

In this section we establish the terminology used in the paper.

1 The rate of a transition is the parameter of an exponentially distributed random variable that
characterizes, for Markovian processes, the duration of the transition.



Given a set M, Σ ⊆ 2M that contains M and is closed under complement and count-
able union is a σ-algebra over M; (M, Σ) is a measurable space and the elements of Σ
are measurable sets. Ω ⊆ 2M is a base for Σ if Σ is the closure of Ω under complement
and countable union; we write Ω = Σ.

A relation R ⊆ M × M is non-wellfounded if there exists {mi ∈ M | i ∈ N} such that
for each i ∈ N, (mi,mi+1) ∈ R; otherwise it is wellfounded. A subset N ⊆ M is R-closed
iff {m ∈ M | ∃n ∈ N, (m, n) ∈ R} ⊆ N. If (M, Σ) is a measurable space and R ⊆ M × M,
Σ(R) denotes the set of measurable R-closed subsets of M.

A measure on (M, Σ) is a function µ : Σ → R+ such that µ(∅) = 0 and for {Ni|i ∈
I ⊆ N} ⊆ Σ with pairwise disjoint elements, µ(

⋃
i∈I Ni) =

∑
i∈I µ(Ni).

Let ∆(M, Σ) be the class of measures on (M, Σ). We organize it as a measurable
space by considering the σ-algebra generated, for arbitrary S ∈ Σ and r > 0, by the sets
{µ ∈ ∆(M, Σ) : µ(S ) ≥ r}.

Given two measurable spaces (M, Σ) and (N, Θ), a mapping f : M → N is measur-
able if for any T ∈ Θ, f −1(T ) ∈ Σ. We use ~M → N� to denote the class of measurable
mappings from (M, Σ) to (N, Θ).

Central for this paper is the notion of an analytic set. We only recall the main def-
inition and mention the properties of analytic sets used in our proofs. For detailed dis-
cussion on this topic related to Markov processes, the reader is referred to [28] (Section
7.5) or to [10] (Section 4.4).

A metric space (M, d) is complete if every Cauchy sequence converges in M.
A Polish space is the topological space underlying a complete metric space with a

countable dense subset. Note that any discrete space is Polish.
An analytic set is the image of a Polish space under a continuous function between

Polish spaces. Note that any Polish space is an analytic set.
There are some basic facts about analytic sets that we use in this paper. Firstly,

an analytic set, as measurable space, has a denumerable base with disjoint elements.
Secondly, IfM1,M2 are analytic sets with Σ1, Σ2 the Borel algebras generated by their
topologies, then the product spaceM = M1 ×M2 with the Borel algebra Σ generated
by the product topology is an analytic set.

3 Modular Markov processes

For the beginning we introduce continuous Markov processes (CMPs) for a finite set
A of actions. CMPs are coalgebraic structures that encode stochastic behaviors. If m
is the current state of the system, N a measurable set of states and a ∈ A, θ(a)(m) is a
measure on the state space and θ(a)(m)(N) ∈ R+ represents the rate of an exponentially
distributed random variable that characterizes the duration of an a-transition from m
to arbitrary n ∈ N. Indeterminacy is resolved by races between events executing at
different rates.

Definition 1 (Continuous Markov processes). Given an analytic set (M, Σ), where Σ
is the Borel algebra generated by the topology, an A-continuous Markov kernel is a



tuple K = (M, Σ, θ), where θ : A → ~M → ∆(M, Σ)�.
If m ∈ M, (K ,m) is anA-continuous Markov process2.

Let K be the class ofA-CMKs;K ,Ki,K
′ are used to range overA-CMKs. Stochas-

tic bisimulation follows the line of Larsen-Skou bisimulation [23, 11, 28].

Definition 2 (Stochastic Bisimilarity). Given K = (M, Σ, θ) ∈ K, a rate-bisimulation
relation on K is a relation R ⊆ M × M such that (m, n) ∈ R iff for any C ∈ Σ(R) and
any a ∈ A, θ(a)(m)(C) = θ(a)(n)(C).
Two processes (K ,m) and (K , n) are stochastic bisimilar, written m ∼K n, if they are
related by a rate-bisimulation relation.

Two processes (K ,m) and (K ′,m′) are stochastic bisimilar, written (K ,m) ∼ (K ′,m′),
iff m ∼K]K ′ m′, where K ] K ′ is the disjoint union of K and K ′. We call the relation
∼ stochastic bisimulation.

3.1 Synchronization

To define the modular Markov processes we need a general notion of synchronization
of CMPs that we introduce following the general line of [20]. For this, we assume extra
structure on the setA of actions.

Firstly, we consider a synchronisation function ∗ that is a partial function ∗ : A ×
A ↪→ A which associates to some a, b ∈ A an action a ∗ b ∈ A interpreted as the syn-
chronisation of a and b. In this way we can mimic various synchronisation paradigms.
For instance, the CCS-style synchronisation [26] requires that a ∗a = τ, where τ ∈ A is
a special action; CSP-style [19] requires that a ∗ a = a; for interleaving and ACP-style
[2] we need to assume that there exists a reflexive transition δ ∈ A such that for any
a ∈ A, a ∗ δ = a. Similarly, most classical notions of parallel composition in process
algebras may be expressed by a suitable synchronization function.
The only formal requirement is that ∗, as an operation, is commutative (a ∗ b = b ∗ a).

Secondly, we assume a function • : R+ × R+ → R+ that computes, given the rates
r and s of the actions a and b respectively, the rate r • s of the synchronisation a ∗ b.
Examples of such function are the mass action law used with stochastic Pi-calculus [29]
and other models of bio-chemical interactions and the minimal rate law used by PEPA
[16] for applications in performance evaluation. The formal requirements are:
• : R+ × R+ → R+ is a continuous function that, as an operation, is commutative

(r• s = s•r), associative ((r• s)•t = r•(s•t)) and bilinear ((r1 +r2)• s = (r1• s)+(r2• s)
and s • (r1 + r2) = (s • r1) + (s • r2)).

These two functions define the synchronization of two CMPs as follows.

Definition 3. For i = 1, 2, letKi = (Mi, Σi, θi) ∈ K and ∆i ⊆ Σi denumerable bases with
disjoint elements. K = (M, Σ, θ) is the product of K1 and K2, written K = K1 × K2, if

2 θ(α) is a measurable mapping between (M, Σ) and ∆(M, Σ). This is equivalent with the con-
ditions on the two-variable rate function used in [13] to define continuous Markov processes
(see, e.g. Proposition 2.9, of [10]).



M = M1 × M2, Σ = ∆1 × ∆2 and θ : A → [M → [Σ → R+]] is defined, for mi ∈ Mi,
a ∈ A and S =

⋃
k∈K⊆N

U1
k × U2

k ∈ Σ for U i
k ∈ ∆i, by

θ(a)((m1,m2))(S ) =

b∗c=a∑
(b,c)∈A2

∑
k∈K

θ1(b)(m1)(U1
k ) • θ2(c)(m2)(U2

k ).

K represents the result of the synchronization of K1 and K2: θ calculates the rate
of a by summing all the possible synchronizations b ∗ c = a between K1 and K2. The
properties of • guarantee that the previous sum is convergent and independent of the
choice of the bases. Because • is bilinear, r • 0 = 0.

Lemma 1. If K1,K2 ∈ K, then K1 × K2 ∈ K.

If (K1,m1) and (K2,m2) are CMPs, then (K1 × K2, (m1,m2)) is a CMP called the
synchronization of (K1,m1) and (K2,m2).

3.2 Parallel composition

For introducing a concept of parallel composition that is general enough to include
most of the similar concepts, we assume that the support set of the Markov kernel has
an algebraic structure called modular structure.

Definition 4 (Modular structure). A tuple (M,≡,⊗) is a modular structure on a set M
if ≡⊆ M × M is an equivalence relation and ⊗ : M × M ↪→ M is a partial operation
which, with respect to ≡, is
– a congruence: if m0 ≡ m1, then m0⊗m2 is defined iff m1⊗m2 is defined and

m0⊗m2 ≡ m1⊗m2,
– associative: (m0⊗m1)⊗m2 is defined iff m0⊗(m1⊗m2) is defined and

(m0⊗m1)⊗m2 ≡ m0⊗(m1⊗m2),
– commutative: m0⊗m1 is defined iff m1⊗m0 is defined and

m0⊗m1 ≡ m1⊗m0,
– modular: if m0⊗m1 ≡ n0⊗n1, then either mi ≡ n j and m1−i ≡ n1− j for i, j ∈ {0, 1}, or
there exist mi

j ∈ M for i, j ∈ {0, 1}, such that mi ≡ mi
0⊗mi

1 and ni ≡ m0
i⊗m1

i for i ∈ {0, 1};
– wellfounded: the relation {(m, n) | ∃n′ ∈ M,m ≡ n⊗n′} is wellfounded.

Process algebras are examples of modular structures where ≡ is the structural con-
gruence or some bisimulation relation, while ⊗ is, for instance, the parallel composi-
tion. In these cases well-foundedness expresses the fact that any process (modulo (Nil):
P ≡ P⊗0) can be decomposed into a finite number of processes that cannot be, fur-
ther, decomposed; and modularity guarantees the uniqueness of this decomposition up
to structural congruence. In process algebras these hold, modulo (Nil), due to the in-
ductive definition of the set of processes.

For modular structures, we lift the signature to sets by defining, for arbitrary N,N′ ⊆
M, N⊗N′ = {m ∈ M | m ≡ n⊗n′ for some n ∈ N, n′ ∈ N′}. Moreover, if Σ ⊆ 2M , let
Σ⊗Σ = {N⊗N′ | N,N′ ∈ Σ}.



Definition 5 (Modular Markov process). An A-modular Markov kernel is a tuple
M = (K ,≡,⊗), whereK = (M, Σ, θ) ∈ K and (M,≡,⊗) is a modular structure such that
its algebraic structure satisfy the following properties
1. it preserves the Borel-algebras, i.e., Σ⊗Σ ⊆ Σ,
2. it preserves the behaviours of modules and their synchronization, i.e.,

(i). ≡⊆∼, (ii). (K ,m0⊗m1) ∼ (K ×K , (m0,m1)).
If m ∈ M, (M,m) is a modular Markov process.

Condition 2(ii) requires that (K ,m0⊗m1) is bisimilar with the synchronization of
(K ,m0) and (K ,m1).

M is called the support ofM, denoted sup(M). Let M be the class of A-modular
Markov kernels (MMKs); we useM,N ,Mi,M

′ to range overM.
Because MMKs preserves the synchronisation of the modules, stochastic bisimula-

tion is a congruence.

Theorem 1 (Congruence). Given (K ,≡,⊗) ∈ M, if m ∼K m′ and both m⊗n and m′⊗n
are defined, then m⊗n ∼K m′⊗n.

4 Modular Markovian Logic

In this section we introduce Modular Markovian Logic (MML).
The formulas of MML are the elements of the set L introduced by the following

grammar, for arbitrary a ∈ A and r ∈ Q+.

φ := >
... ¬φ

... φ ∧ φ
... La

rφ
... φ|φ.

The semantics is given by the satisfiability relation ”  ” defined forM ∈ M and
m ∈ sup(M), inductively as follows.
M,m  > always;
M,m  ¬φ iff it is not the case thatM,m  φ;
M,m  φ ∧ ψ iffM,m  φ andM,m  ψ;
M,m  La

rφ iff θ(a)(m)(~φ�M) ≥ r, where ~φ�M = {m ∈ M|M,m  φ};
M,m  φ1|φ2 iff m ≡ m1⊗m2 andM,mi  φi, 1 = 1, 2.

”|” is a polyadic modality of arity 2. The formula La
rφ is interpreted as “the rate of an

a-transition from the current state to a state satisfying φ is at least r”. Notice that the
semantics of La

rφ is well defined only if ~φ�M is measurable. This is guaranteed by the
next lemma.

Lemma 2. For any φ ∈ L and anyM = (M, Σ, θ) ∈ M, ~φ�M ∈ Σ.

When it is not the case thatM,m  φ, we writeM,m 1 φ. A formula φ is satisfiable
if there existsM ∈ M and m ∈ sup(M) such thatM,m  φ. If ¬φ is not satisfiable, φ
is valid, denoted by  φ.

In what follows we consider all the Boolean derived operators. In addition, let�
i=1..n

φi =

i, j∧
i, j=1..n

(φi → ¬φ j) and ⊥ = ¬> and for k ∈ N, let k = ¬(>|>|..|>︸   ︷︷   ︸
k+1

); notice

thatM,m  k iff m can be decomposed in maximum k modules.



In the rest of this section we focus on the logical equivalence induced by MML on
MMPs and its relation to stochastic bisimulation on MMPs. The next theorem states
that ≡ preserves the satisfiability of L formulas.

Theorem 2. ForM ∈ M and m, n ∈ sup(M), if m ≡ n, then
for all φ ∈ L, M,m  φ iffM, n  φ.

Let L∗ ( L be defined by the grammar φ := >
... ¬φ

... φ ∧ φ
... La

rφ. The next theorem
reproduces a similar result presented in [13, 28].

Theorem 3. GivenM ∈ M and m, n ∈ sup(M),
if [for any φ ∈ L∗, M,m  φ iffM, n  φ], then m ∼ n.

5 A complete Hilbert-style axiomatization for MML

Tables 1, 2 and 3 contain a Hilbert-style axiomatization for MML.
The stochastic axioms in Table 1 have been proposed in [8] where we have proved

that they form a complete axiomatization for CMPs. These axioms are similar, but more
complex due to stochasticity, than the ones proposed in [31] for Harsanyi type spaces.
As in the probabilistic case, we have infinitary rules (R2) and (R3) that encode the
Archimedean properties of Q. However, a finitary axiomatization is possible on the
lines of [17] at the price of defining some complex operators, as shown in [22].

Table 1: Stochastic Axioms Table 2: Structural Axioms
(A1): ` La

0φ
(A2): ` La

r+sφ→ La
rφ

(A3): ` La
r (φ ∧ ψ) ∧ La

s(φ ∧ ¬ψ)→ La
r+sφ

(A4): ` ¬La
r (φ ∧ ψ) ∧ ¬La

s(φ ∧ ¬ψ)→ ¬La
r+sφ

(R1): If ` φ→ ψ then ` La
rφ→ La

rψ
(R2): If ∀r < s, ` φ→ La

rψ then ` φ→ La
sψ

(R3): If ∀r > s, ` φ→ La
rψ then ` φ→ ⊥

(A5): ` (φ|ψ)|ρ→ φ|(ψ|ρ)
(A6): ` φ|ψ→ ψ|φ
(A7): ` φ|⊥ → ⊥
(A8): ` φ|(ψ ∨ ρ)→ (φ|ψ ∨ φ|ρ)
(R4): If ` φ→ ψ then ` φ|ρ→ ψ|ρ
(R5): If ` φ→ φ|> then ` φ→ ⊥

The structural axioms in Table 2 are similar to the axioms proposed in [25] for a
spatial logic on CCS semantics. The main difference is rule (R5) which rejects models
that do not respect the modularity conditions. An example is the rule (Nil): P ≡ P|0
which allows processes with (trivial) non-wellfounded structure. However, one can eas-
ily make an MMP from a process algebra term by simply taking the quotient of the
class of processes by (Nil) and similar rules.

To simplify the form of the modular axioms in Table 3, we use some additional
notations. πk is the set of permutations of {1, .., k}. For arbitrary a ∈ A, we assume that
the set of its ∗-decompositions (which is finite) is indexed and let Ia = {i | bi ∗ ci = a}.
If {(ri, j

k ) | i ∈ I, k ∈ K, j ∈ {0, 1}}, {(si, j
k ) | i ∈ I, k ∈ K, j ∈ {0, 1}} ⊆ Q+, let rI

K • sI
K =∑

i∈I

k∈K∑
j∈{0,1}

(ri, j
k ) • (si, j

k ).

The rules (R6) and (R7) encode the well-foundedness and the modularity of the
models. The rules (R8) and (R9) are logical versions of classical expansion laws for



parallel operator. (R8) states that the rate of the a-transitions from m to ~ρ� is at least
the sum, after k ∈ K, of all •-products of the rates of b and c-transitions (for a = b ∗ c)
from m1 and m2 to ~φ j

k� and ~φ1− j
k � respectively ( j = 0, 1), given that m ≡ m1⊗m2 and

~ρ� covers
⋃
k∈K

~φ
j
k�⊗~φ

1− j
k �. For instance, ` (Lb

rφ ∧ Lc
uψ)|(Lc

sψ ∧ Lb
vφ) → Lb∗c

(r•s)+(u•v)φ|ψ

and ` Lb
r>|L

c
s> → Lb∗c

r•s> are instances of (R8). Similarly, (R9) states that the rate of the
a-transitions from m to ~ρ� is strictly bigger than the sum, after k ∈ K, of all •-products
of the rates of b and c-transitions (for a = b ∗ c) from m1 and m2 to ~φ j

k� and ~φ1− j
k �

respectively ( j = 0, 1), given that m ≡ m1⊗m2 and ~ρ� is covered by
⋃
k∈K

~φ
j
k�⊗~φ

1− j
k �.

` (¬Lb
r>∧¬Lc

u>)|(¬Lc
s>∧¬Lb

v>)→ ¬La
(r•s)+(u•v)(>|>) is an instance of (R9) given that

b, c are the only actions such that a = b ∗ c.

Table 3: Modular axioms

(R6): If I is finite and ` 1→
∨
i∈I

φi, then ` k →
s<k∨
i j∈I

φi1 |...|φis .

(R7): If `
j=0,1∧
i=1..k

(φ j
i → 1) and ` φ0

1|..|φ
0
k → φ1

1|..|φ
1
l , then k = l and

`
∨
σ∈πk

∧
i=1..k

φ0
i ↔ φ1

σ(i)

(R8): If K is finite and ` (
�
k∈K

φ0
k) ∧ (

�
k∈K

φ1
k) ∧ (

∨
k∈K

φ0
k |φ

1
k → ρ), then

`

 i∈Ia∧
k∈K

∧
j=0,1

Lbi

(ri, j
k )
φ

j
k

 |
 i∈Ia∧

k∈K

∧
j=0,1

Lci

(si, j
k )
φ

1− j
k

→ La
(rI

K•s
I
K )ρ

(R9): If K is finite and ` (
�
k∈K

φ0
k) ∧ (

�
k∈K

φ1
k) ∧ (ρ→

∨
k∈K

φ0
k |φ

1
k), then

`

 i∈Ia∧
k∈K

∧
j=0,1

¬Lbi

(ri, j
k )
φ

j
k

 |
 i∈Ia∧

k∈K

∧
j=0,1

¬Lci

(si, j
k )
φ

1− j
k

→ ¬La
(rI

K•s
I
K )ρ

As usual, we say that a formula φ is provable, denoted by ` φ, if it can be proved
from the axioms (using also Boolean rules). φ is consistent, if φ → ⊥ is not provable.
Given a set Φ,Ψ ⊆ L, Φ proves Ψ if from the formulas of Φ and the axioms we can
prove all ψ ∈ Ψ ; we write Φ ` Ψ . Φ is consistent if it is not the case that Φ ` ⊥.
For a sublanguage L ⊆ L, we call Φ L-maximally consistent if Φ is consistent and
no formula of L can be added to it without making it inconsistent. For Λ1, Λ2 ⊆ L,
Λ1|Λ2 = {φ1|φ2 : φi ∈ Λi, i = 1, 2}.

Theorem 4 (Soundness). The axiomatic system of MML is sound for the Markovian
semantics, i.e., for any φ ∈ L, if ` φ then  φ.

In what follows we prove the finite model property for MML by constructing a
model for a given consistent formula. This result will eventually prove that the ax-
iomatic system is also complete for the Markovian semantics, meaning that everything
that is true for all the models can be proved. Before proceeding, we fix some notations.



For n ∈ N, n , 0, let Qn = {
p
n : p ∈ N}. If S ⊆ Q is finite, the granularity of S ,

gr(S ), is the lowest common denominator of the elements of S .
The modal depth of φ ∈ L is defined by md(>) = 0, md(¬φ) = md(φ), md(La

rφ) =

md(φ) + 1 and md(φ ∧ ψ) = md(φ|ψ) = max(md(φ),md(ψ)).
The structural depth of φ ∈ L is defined by sd(¬φ) = sd(La

rφ) = sd(φ), sd(φ ∧ ψ) =

max(sd(φ), sd(ψ)) and sd(φ|ψ) = sd(φ) + sd(ψ) + 1.
The granularity of φ ∈ L is gr(φ) = gr(R), where R ⊆ Q+ is the set of indexes r of the
operators La

r present in φ; the upper bound of φ is max(φ) = max(R).
For arbitrary n ∈ N, let Ln be the sublanguage of L that uses only modal operators La

r
with r ∈ Qn. For Λ ⊆ L, let [Λ]n = Λ ∪ {φ ∈ Ln : Λ ` φ}.

Consider a consistent formula ψ ∈ L with gr(ψ) = n and sd(ψ) = e.
Let L[ψ] = {φ ∈ Ln | max(φ) ≤ max(ψ),md(φ) ≤ md(ψ) and sd(φ) ≤ sd(ψ)}.

In what follows we construct Mψ ∈ M such that each Γ ∈ sup(Mψ) is a consis-
tent set of formulas that contains an L[ψ]-maximally consistent set and each L[ψ]-
maximally consistent set is contained in some Γ ∈ sup(Mψ). And we prove the truth
lemma stating that for any φ ∈ L[ψ], φ ∈ Γ iffMψ, Γ  φ.

LetΩ[ψ] be the set ofL[ψ]-maximally consistent sets of formulas.Ω[ψ] is finite and
any Λ ∈ Ω[ψ] contains finitely many nontrivial formulas3; in the rest of this construction
we only count non-trivial formulas while ignoring the rest.

For each Λ ∈ Ω[ψ], such that {φ1, ..., φi} is the set of its non-trivial formulas, we
construct Λ+ ⊇ [Λ]n with the property that ∀φ ∈ Λ and a ∈ A there exists ¬La

rφ ∈ Λ
+.

The step [φ1 and Λ:] (R3) guarantees that ∃r ∈ Qn s.t. [Λ]n ∪ {¬La
rφ1} is consistent.

Let ya
1 = min{s ∈ Qn : [Λ]n∪{¬La

sφ1} is consistent} and xa
1 = max{s ∈ Qn : La

sφ1 ∈ [Λ]n}

((R3) guarantees the existence of max). (R2) implies that ∃r ∈ Q \ Qn s.t., xa
1 < r < ya

1
and {¬La

rφ1} ∪ [Λ]n is consistent. Let n1 = gran{1/n, r}. Let sa
1 = min{s ∈ Qn1 : [Λ]n1 ∪

{¬La
sφ1} is consistent}, Λa

1 = Λ ∪ {¬La
s1
φ1} and Λ1 =

⋃
a∈A

Λa
1.

We repeat this step of the construction for [φ2 and Λ1],..,[φi and Λi−1] and we obtain
Λ ⊆ Λ1 ⊆ ... ⊆ Λi, where Λi is a consistent set containing a finite set of nontrivial
formulas. Let nΛ = gran{1/n1, .., 1/ni}. We make this construction for all Λ ∈ Ω[ψ]. Let
v = gran{1/nΛ : Λ ∈ Ω[ψ]}. Let Λ+ = [Λi]v and Ω+[ψ] = {Λ+ : Λ ∈ Ω[ψ]}. Notice that
v > n; we call v the parameter of Ω[ψ].

Remark 1. For each Λ ∈ Ω[ψ], φ ∈ Λ and a ∈ A, there exist s, t ∈ Qv, s < t, such that
La

sφ,¬La
rφ ∈ Γ

+. Moreover, there exists f ∈ Λ+ such that f ` Λ+.

Let Ωv be the set of Lv-maximally consistent sets of formulas and σ : Ω+[ψ]→ Ωv

be an injection such that for any Λ+ ∈ Ω+[ψ], Λ+ ⊆ σ(Λ+). Let Ωv[ψ] = σ(Ω+[ψ]), and
for φ ∈ L[ψ], let ~φ� = {Γ ∈ Ωv[ψ] : φ ∈ Γ}.

Lemma 3. (1) Ωv[ψ] is finite. (2) 2Ωv[ψ] = {~φ� | φ ∈ L[ψ]}.
(3) For any φ1, φ2 ∈ L[ψ], ` φ1 → φ2 iff ~φ1� ⊆ ~φ2�.
(4) For any Γ ∈ Ωv[ψ], φ ∈ L[ψ] and a ∈ A, there exist
x = max{r ∈ Qv : La

rφ ∈ Γ}, y = min{r ∈ Qv : ¬La
rφ ∈ Γ} and y = x + 1/v.

3 By nontrivial formulas we mean the formulas that are not obtained from more basic consistent
ones by boolean derivations.



Let Ω be the set of L-maximally consistent sets of formulas and π : Ωv → Ω an
injection such that for any Γ ∈ Ωv, Γ ⊆ π(Γ).

Lemma 4. For any Γ ∈ Ωv[ψ], any φ ∈ L[ψ] and any a ∈ A, there exist
x∞ = sup{r ∈ Q : La

rφ ∈ π(Γ)} = in f {r ∈ Q : ¬La
rφ ∈ π(Γ)} and x ≤ x∞ < y.

We denote by aΓφ = x∞ defined for φ ∈ L[ψ], Γ ∈ Ωv[ψ] and a ∈ A.

Lemma 5. Mψ = (Kψ,≡, ⊗) ∈ M, where Kψ = (Ωv[ψ], 2Ωv[ψ], θψ) with
(i). θψ defined for arbitrary φ ∈ L[ψ], Γ ∈ Ωv[ψ], a ∈ A by θψ(a)(Γ)(~φ�) = aΓφ ,
(ii). ⊗ and ≡ implicitly defined for Γ, Γ′, Γ′′ ∈ Ωv[ψ] by [Γ ≡ Γ′⊗Γ′′ iff Γ′|Γ′′ ⊆ Γ].

Proof. This proof is rather complex. we only sketch here the main arguments.
Lemma 3(3) proves that for arbitrary Γ ∈ Ωv[ψ] and a ∈ A, θψ(a)(Γ) is well defined.

To prove that θψ(a)(Γ) is a measure, we show that θψ(a)(Γ)(~⊥�) = 0 and that for
φ1, φ2 ∈ L[ψ] with ` φ1 → ¬φ2, θψ(a)(Γ)(~φ1�)+θψ(a)(Γ)(~φ2�) = θψ(a)(Γ)(~φ1∨φ2�).
These use the stochastic and the structural axioms, especially the archimedian rules.

The modular structure ofMψ is proved based on Rules (R5), (R6) and (R7).
It remains to prove that (Mψ, Γ

′⊗Γ′′) ∼ (Mψ×Mψ, (Γ′, Γ′′)). This requires to prove
that Γ′|Γ′′ ⊆ Γ implies that for arbitrary φ ∈ L[ψ],

θψ(a)(Γ)(~φ�) =
∑

b∗c=a

g′,g′′∈F ∗∑
~φ�=~g′ |g′′�

θψ(b)(Γ′)(~g′�) • θψ(c)(Γ′′)(~g′′�).

This prove is done by involving the Rules (R8) and (R9) that approximates, from below
and from above the value of θψ(a)(Γ)(~φ�). Also here the archimedian rules play a
central role together with the hypothesis of the continuity of •.

Now we can prove the Truth Lemma.

Lemma 6 (Truth Lemma). If φ ∈ L[ψ] and Γ ∈ Ωv[ψ], then [Mψ, Γ  φ iff φ ∈ Γ].

Proof. Induction on the structure of φ. The Boolean cases are trivial.
The case φ = La

rφ
′: (=⇒) Suppose that Mψ, Γ  La

rφ
′ and La

rφ
′ < Γ. Because Γ is

L[ψ]-maximally consistent, ¬La
rφ
′ ∈ Γ. Let y = min{r ∈ Qp : ¬La

rφ
′ ∈ Γ}. Then, from

¬La
rφ
′ ∈ Γ, we obtain r ≥ y. ButMψ, Γ  La

rφ
′ is equivalent with θψ(a)(Γ)(~φ′�) ≥ r,

i.e. aΓφ′ ≥ r. On the other hand, in Lemma 4 we proved that aΓφ′ < y - contradiction.
(⇐=) Suppose that La

rφ
′ ∈ Γ. Then r ≤ aΓφ , implying θψ(a)(Γ)(~φ�) ≥ r.

The case φ = φ1|φ2: (=⇒) IfMψ, Γ  φ1|φ2, then Γ = Γ1⊗Γ2 andMψ, Γi  φi, i = 1, 2.
The inductive hypothesis implies that φi ∈ Γi and because Γ1|Γ2 ⊆ Γ , φ1|φ2 ∈ Γ.
(⇐=) If φ1|φ2 ∈ Γ, then there exist Γi with φi ∈ Γi and Γ1|Γ2 ⊆ Γ, i.e. Γ = Γ1⊗Γ2.

The previous lemma implies the small model property for our logic.

Theorem 5 (Small model property). For any consistent formula φ, there existsM ∈
M with the cardinality of sup(M) bound by the structure of φ, and m ∈ sup(M) such
thatM,m  φ.



The small model property proves the completeness of the axiomatic system.

Theorem 6 (Completeness). MML is complete with respect to the Markovian seman-
tics, i.e. if  ψ, then ` ψ.

Proof. The proof is based on the fact that any consistent formula has a model. Indeed,
[ ψ implies ` ψ] is equivalent with [0 ψ implies 1 ψ], that is equivalent with [the
consistency of ¬ψ implies that there exists a model M such that M,m 1 ψ], that is
equivalent with [the consistency of ¬ψ implies the satisfiability of ¬ψ].

6 Conclusions and future work

In this paper we have introduced Modular Markovian Logic, a new logic that combines
features of stochastic and modular logics. Its semantics is in terms of modular Markov
processes which are compositional continuous-time and continuous-space Markov pro-
cesses. MML is appropriate for specifying and verifying modular properties of stochas-
tic systems and to prove global properties from local properties of subsystems. For
instance modular proof rules as the ones below can be given as instances of (R9).

P  Lb
r>, P′  Lc

s>

P⊗P′  Lb∗c
r•s>

and
P  Lb

rφ ∧ Lc
uψ, P′  Lc

sψ ∧ Lb
vφ

P⊗P′  Lb∗c
(r•s)+(u•v)ρ

(` φ|ψ→ ρ).

Similarly, if b, c are unique such that a = b∗c and P, P′ are unique such that P′′ ≡ P⊗P′,
the rule below is based on an instance of (R10).

P  ¬Lb
r> ∧ ¬Lc

u>, P′  ¬Lc
s> ∧ ¬Lb

v>

P′′  ¬La
(r•s)+(u•v)(>|>)

In this paper we have presented a complete Hilbert-style axiomatization for MML
and prove the small model property. For future work we intend to focus on decidability
and complexity problems following the line of [24], as well as on axiomatizations of
model checking and possible procedures to automatize the proof of modular rules.
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